chromosomal instability

New Publication: The Oncogenic Functions of MASTL Kinase

Posted on Updated on

I am very excited to announce our new review paper which is out now in Front Cell Dev Biol [Link]. This is also the first paper from Dr Kamila Marzec who recently joined the lab. Great work!

MASTL kinase is a master regulator of mitosis, essential for ensuring that mitotic substrate phosphorylation is correctly maintained. It achieves this through the phosphorylation of alpha-endosulfine and subsequent inhibition of the tumour suppressor PP2A-B55 phosphatase. In recent years MASTL has also emerged as a novel oncogenic kinase that is upregulated in a number of cancer types, correlating with chromosome instability and poor patient survival. While the chromosome instability is likely directly linked to MASTL’s control of mitotic phosphorylation, several new studies indicated that MASTL has additional effects outside of mitosis and beyond regulation of PP2A-B55. These include control of normal DNA replication timing, and regulation of AKT/mTOR and Wnt/β-catenin oncogenic kinase signalling. In this review, we will examine the phenotypes and mechanisms for how MASTL, ENSA and PP2A-B55 deregulation drives tumour progression and metastasis. Finally, we will explore the rationale for the future development of MASTL inhibitors as new cancer therapeutics.

Source: The Oncogenic Functions of MASTL Kinase

Advertisements

New Co-author Publication: Hic1 maintains chromosomal stability independent of p53

Posted on

Great news, we have a new co-author publication out in the journal Oncogene! The work was lead by Professor Neil Watkins, and is titled “The tumor suppressor Hic1 maintains chromosomal stability independent of Tp53”.

You can access the full article here [Link]

ABSTRACT: Hypermethylated-in-Cancer 1 (Hic1) is a tumor suppressor gene frequently inactivated by epigenetic silencing and loss-of- heterozygosity in a broad range of cancers. Loss of HIC1, a sequence-specific zinc finger transcriptional repressor, results in deregulation of genes that promote a malignant phenotype in a lineage-specific manner. In particular, upregulation of the HIC1 target gene SIRT1, a histone deacetylase, can promote tumor growth by inactivating TP53. An alternate line of evidence suggests that HIC1 can promote the repair of DNA double strand breaks through an interaction with MTA1, a component of the nucleosome remodeling and deacetylase (NuRD) complex. Using a conditional knockout mouse model of tumor initiation, we now show that inactivation of Hic1 results in cell cycle arrest, premature senescence, chromosomal instability and spontaneous transformation in vitro. This phenocopies the effects of deleting Brca1, a component of the homologous recombination DNA repair pathway, in mouse embryonic fibroblasts. These effects did not appear to be mediated by deregulation of Hic1 target gene expression or loss of Tp53 function, and rather support a role for Hic1 in maintaining genome integrity during sustained replicative stress. Loss of Hic1 function also cooperated with activation of oncogenic KRas in the adult airway epithelium of mice, resulting in the formation of highly pleomorphic adenocarcinomas with a micropapillary phenotype in vivo. These results suggest that loss of Hic1 expression in the early stages of tumor formation may contribute to malignant transformation through the acquisition of chromosomal instability.