proteomics

New Review Article Published!! “Mechanisms Regulating Phosphatase Specificity During Mitotic Exit”

Posted on Updated on

icl31035-toc-0001

Great News, we have a new review article that has just been published online today in Inside the Cell!
Its Open Access, so that means its free for everyone to read!

During mitotic exit, phosphatases reverse thousands of phosphorylation events in a specific temporal order to ensure that cell division occurs correctly. This review explores how the physicochemical properties of the phosphosite and surrounding amino acids affect interactions with phosphatase/s and help determine the dephosphorylation of individual phosphorylation sites during mitotic exit.

The Full Reference and link for the Article can be found below:
Samuel Rogers, Rachael McCloy, D Neil Watkins and Andrew Burgess Mechanisms regulating phosphatase specificity and the removal of individual phosphorylation sites during mitotic exit Inside the Cell [Link]

Advertisements

New Paper Published! More data on the global phosphorylation changes during early mitotic exit

Posted on Updated on

Figure 1

Great news, we have another publication. This time its some extra data left over from our large mass spectrometry study we published in August in Molecular & Cellular Proteomics.

This latest work we provide additional analysis of our large proteomics dataset and identify motifs that correlated strongly with phosphorylation status for each of the major mitotic kinases.

These motifs could be used to predict the stability of phosphorylated residues in proteins of interest, and help infer potential functional roles for uncharacterized phosphorylations.

If you would like more information you can check out the full paper here [Link]. And the great news is that its OpenAccess and FREE for everyone!

Rogers, S., McCloy, R. A., Parker, B. L., Chaudhuri, R., Gayevskiy, V., Hoffman, N. J., Watkins, D. N., Daly, R. J., James, D. E., and Burgess, A. (2015) Dataset from the global phosphoproteomic mapping of early mitotic exit in human cells. Data in Brief 5, 45–52

 

 

 

Our Latest Publication Accepted and Now Online!

Posted on

Great news our latest publication “Global phosphoproteomic mapping of early mitotic exit in human cells identifies novel substrate dephosphorylation motifs” has been accepted by the top Proteomics Journal Molecular & Cellular Proteomics.

You can currently download the unformatted version for free here [link]

And here is an still image from the paper showing live HeLa cells undergoing forced phosphatase dependent mitotic exit. The red colour is Histone H2B tagged with the fluorescent mCherry protein, and the Green is tubulin tagged with GFP (green fluorescent protein).

 

HeLa cells undergoing phosphatase dependent mitotic exit
HeLa cells undergoing phosphatase dependent mitotic exit