Position available: 2016 Honours Student Project in our Lab

Posted on Updated on

Great news we are currently looking for a new honours student for 2016.

The title of the project is “Developing novel biosensors to monitor DNA damage in cancer cells”.

Its a very exciting new project incorporating cutting edge microscopy and fluorescent biosensors.

If you think you have what it takes and are interested please feel free contact myself, or UNSW SoMS.
For more information on the UNSW honours program please visit: http://medicalsciences.med.unsw.edu.au/students/soms-honours/

Below is an example of the images that will be created during the project.

We will be at the Sydney Light Optical Users Meeting on July 24th 2014

Posted on Updated on

Great news, Cell Division Lab will be at the  Sydney Light Optical Users Meeting, hosted by Dr Pamela Young at Sydney University, this Thursday (24th of July).

I will be presenting a short seminar on “Imaging and Analysing Cell Division”.

If you would like to attend please contact Pamela asap. Her details are below!

Hope to see you there !

Sydney Light Optical Users Meeting July 2014

Were the front cover feature image on this months issue of Cell Cycle !

Posted on Updated on

Some more good news to coincide with today’s official release of our manuscript, one of our images has been chosen to be the feature image on the front cover.

It’s a great honour, one that I am very proud of, and is the first time I have ever had a front cover !
You can view the current issue (Volume 13 – Issue 9 – May 1, 2014) here.

Or jump directly to our paper here

Front Cover 



Read the rest of this entry »

Cell Image of the Week – Mitotic Catastrophe

Posted on Updated on

Here is one of the images that we took using a Leica SP8 confocal microscope this week in the lab.
It is a 3D image of a HeLa cell that has completely stuffed up mitosis (undergone mitotic catastrophe). It has separated whole chromosomes randomly into 2 daughter cells instead of separating the two identical chromatids in two.

And here is an artistic version just for fun !

A brief Intro to Greatwall Kinase…The King of Mitosis

Posted on Updated on

Our favourite protein in the lab is Greatwall kinase. It was first discovered in 2004 to be critical for cell division in fruit flies (1,2) . The trail then went cold for a few years as to its exact function, but in 2009, while I was working as a post-doc in France, I was fortunate enough to be in the lab that uncovered its exciting mode of action. For cells to get into mitosis they must activate a key protein called cyclin dependent kinase 1 (Cdk1). I like to think of this as the accelerator in a car. So to get moving cells push on the gas!
And conversely to get out of mitosis you need to hit the brakes. These brakes are the phosphatases which reverse the action of kinases like Cdk1. That’s great but what is missing from this equation?
Well like any car it’s pretty useless without a driver to co-ordinate the accelerator and brakes. And this is where Greatwall (Gwl for short) comes in. It makes sure that when Cdk1 (accelerator) turns on that the breaks get turned off and vice versa (3,4). Without Gwl the cell gets into a lot of trouble very fast, which you can see in the image below. Here I depleted the human version of Gwl (a gene called MASTL) and watched what happened as cells tried to undergo mitosis (5). As you can see they don’t do a very good job… the result is cells fail to divide correctly, resulting in multiple defects and often cell death.

Gwl Figure

I hope you enjoyed part one of my feature on Gwl, and in part 2 I will into more details about this amazing and exciting new protein.


1. Bettencourt-Dias, M. et al. Genome-wide survey of protein kinases required for cell cycle progression. Nature 432, 980–987 (2004).

2. Yu, J. et al. Greatwall kinase: a nuclear protein required for proper chromosome condensation and mitotic progression in Drosophila. J Cell Biol 164, 487–492 (2004). [Link]

3. Vigneron, S. et al. Greatwall maintains mitosis through regulation of PP2A. EMBO J 28, 2786–2793 (2009). [Link]

4. Lorca, T. et al. Constant regulation of both the MPF amplification loop and the Greatwall-PP2A pathway is required for metaphase II arrest and correct entry into the first embryonic cell cycle. J Cell Sci 123, 2281–2291 (2010). [Link]

5. Burgess, A. et al. Loss of human Greatwall results in G2 arrest and multiple mitotic defects due to deregulation of the cyclin B-Cdc2/PP2A balance. Proc Natl Acad Sci USA 107, 12564–12569 (2010). [Link]

New Mitotic Movies

Video Posted on Updated on

The Garvan recently took possession of a fantastic new Leica SP8 confocal microscope, which we have been lucky enough to have play with. Here are the results from our first go with the microscope. Very impressive, and we are yet to push the system to its fully potential. The massive increase in resolution and quality will greatly help in rapidly advancing our understanding of key mitotic events.